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ABSTRACT 
 
This paper compares an integrated evaluation approach to decision-making with more traditional 
sensitivity analysis and Monte Carlo simulation. The primary objective is to highlight the 
differences in NPV that can arise from using these evaluation methods in a top down and bottom-
up approach. Results from three resource scenarios, derived from sampling a "virtual" ore body 
(reality) on grid spacings of 75m, 50m and 25m, are analyzed and compared. 
 

INTRODUCTION 
 
Decision-makers are often faced with the challenge of making investment decisions on complex 
mineral projects based on an expected financial return, which, in turn, is based on limited 
sampling data. There are different types of risks associated with a mineral project, unsystematic 
(specific) risks associated with technical aspects of the project related to resources and reserves, 
and systematic (market) risks such as foreign exchange (forex) and forward prices for labour, 
concrete, diesel, steel etc. Evaluation analysts often include a risk premium to account for specific 
risks. The challenge for effective decision-making is deriving the magnitude of this risk premium. 
There are several approaches that can be used to reflect technical risks in mineral projects 
including sensitivity analysis, Monte Carlo (MC) simulations and geostatistical techniques. This 
paper aims to explore the benefits and limitations of these three approaches.  
 
Mineral project valuation has progressed substantially in the last decade with the emergence of 
CIMVAL (2003) and VALMIN (1998) valuation codes and guidelines that govern the technical 
assessment and valuation of mineral assets and securities. These valuation codes correspond to 
the NI43-101 (2001) and JORC (1995) resource and reserve classification codes, respectively. 
They are not prescriptive and do not require quantitative confidence limits to be assigned to 
tonnages, grade and revenue estimates. Even after classification, the uncertainty of resources and 
reserves cannot easily be translated into quantitative risks that can be incorporated within a cash 
flow model.  
 
This paper focuses on exploring methods that assess the relationship between geological 
uncertainty, mining and treatment efficiency, and methods to calculate the impact that this 
relationship has on the valuation of a mineral project (see Figure 1). A cash flow model is used to 
demonstrate these effects by comparing results from a sensitivity and Monte Carlo analysis with 
an integrated evaluation model (IEM) that reflects a mineral project’s technical risks. The IEM 
aims to reflect the technical linkages and spatial correlations between resource uncertainties and 
reserves and the cash flow model. The authors use an innovative method of ‘back calculating’ the 
average technical discount rate that should be applied to the cash flow model in a conventional 
DCF calculation.  



 
 
Figure 1 illustrates the effect of dyke variability on measurement scale and mining constraints 



EVALUATION PRACTICES 
 
Technical risk is inherent within sampling, resource models, mine plans, extraction and treatment 
processes and financial models. Risks within these areas can be expressed as a function of 
variability, the inherent stochastic nature of the deposit; and uncertainty, the assessor’s lack of 
knowledge (Vose, 2002). While there are several types of risk analysis and assessment techniques 
available, the selection of an appropriate technique depends on a number of considerations such 
as the time available to conduct the analysis, availability and accuracy of data, scale of required 
estimate, number of uncertain factors, complexity of the relationships between factors and the 
competency of the analyst. A risk analysis and assessment study may combine one or more of 
these techniques.  
 
There are a number of risk techniques including subjective probability impact studies using 
expert opinion (Aspinall and Brown, 2004); MC simulations and probability distribution 
modelling in spreadsheet based software programs (Vose, 2002); multivariate data analysis tools 
to describe complex statistical relationships (Esbensen, 2002); and geostatistical techniques to 
quantify the variability of spatially orientated variables in mineral projects. Since the application 
of geostatistical techniques, such as kriging and later, spatial simulations to mineral projects 
(Matheron, 1973, Journel and Huibrechts, 1978, Krige, 1951); among other applications, 
geostatistics has also been used to quantify the impact of resource uncertainties on mine planning, 
sequencing and scheduling (Ravenscroft, 1992, Dimitrakopoulos et al., 2002, Dowd and Dare-
Bryan, 2004, Deriasme and Farrow, 2004).  
 
While conventional discounted cash flow (DCF) is still used as the baseline for decision-making, 
there has been substantial research carried out to understand its advantages and limitations 
(Smith, 1982) and (Davis, 1995). A combination of statistics, MC simulations and geostatistical 
ore body simulations are used to address the uncertainty in cash flows while real options 
(Brennan and Schwartz, 1985, Mason and Merton, 1985) were developed to improve estimation 
accuracies with respect to addressing the lack of flexibility in DCF projections. Statistical, 
geostatistical and MC simulation modelling techniques are often combined with real options in 
the valuation of mineral projects (Galli et al., 2004, Goria, 2004)  
 

BACKGROUND AND PROBLEM DEFINITION 
 
The De Beers, Snap Lake kimberlite is located 220 kilometres northeast of Yellowknife North 
Western Territories, within the Achaean Slave Province craton of Canada. The body is a 
kimberlite dyke that dips at 15 degrees towards the north east and is on average 2.8m thick. A 
majority of the Snap Lake kimberlite dyke is hosted within an Archean multiphase suite of 
intrusive granitoids, with a minor portion of the kimberlite dyke emplaced within overlying 
metavolcanics and metasediments of the Archean greenstone belts.  
 
The Geometry of the dyke is variable. On the regional scale (100s of metres) the Snap Lake dyke 
appears to be a continuous, gently dipping sheet, although three areas of offset have been 
identified by surface seismic imaging (McBean et al., 2001). At a more local scale (10-100m), 
orientation changes and splits and large splays have been observed. These are thought to be 
structurally controlled. On a small scale (0-10m), the dyke is typically controlled by two different 
host rock features.  Within the strongly foliated metavolcanics, the kimberlite appears to roll and 
undulate on a small scale matching the foliation, while in the granitic host rocks, local variations 



occur along a primary set of joints that are flat lying but affected by secondary jointing at 
approximately 35° dip resulting in an angular step-like nature to the dyke (McBean et al., 2001).  
 
To assess the impact of geological variability on the project valuation, the authors simplified the 
Snap Lake problem by assuming that dyke thickness and shape variability derived from face-
mapping in the development tunnels were representative of the entire deposit. Three approaches 
were adopted; a sensitivity analysis where the variables dilution, tonnage throughput and 
recovery were changed by ±5%, 10% and 15% from their expected values; MC simulations were 
run on the same variables using expert opinion to parameterize the input variables; and finally an 
IEM was developed to allow both bottom-up and ‘top down’ evaluation methodologies. Results 
of these three approaches were compared with each other and against a virtual ore body (V-Bod). 
 

BUILDING AN INTEGRATED EVALUATION MODEL 
 
A virtual ore body (V-bod) was created using a non-conditional geostatistical simulation based on 
data gathered from a combination of drilling information, bulk-samples and face mapping from 
an exposed part of the dyke.  It was assumed to be the ‘reality’ on which the various sampling 
campaigns were conducted to generate the sample data. Two variables were considered in the 
evaluation model, viz. geometrical variability of the top surface of the dyke (v1) and thickness 
related to the volume of the dyke. Grade was not deemed to have any significant variability 
between scenarios and thus, a single sampling campaign on a 50m grid sufficed. 
 
Three sampling campaigns were used to virtually sample the V-bod at point support using the 
geostatistical software, Isatis from Geovariances. Vertical core drilling campaigns were designed 
on a 75m, 50m and 25m grid to sample for v1 and thickness variables, creating resource scenarios 
one, two and three respectively.  
 
Resource models for v1 and thickness were generated for each scenario based on sampling data 
from each campaign. Ordinary kriging was used to generate estimates for each scenario into 
smallest mining units (SMUs) of 4m by 4m. The same grades were applied to each scenario in 
order to keep grade constant and only assess the impact of geological variability. Figure 2 
illustrates the resource models for thickness. Although the statistical means and variances 
between the three scenarios show no significant differences, the spatial distribution of thickness is 
visually different. Warmer colours signify higher values while colder colours are low values. 
 
Reserve considerations focused mainly on mining and treatment processes. A conventional room 
and pillar underground method was used with an option of slashing and drifting, depending on 
whether the dyke thickness was less than a specified mining threshold. An average extraction rate 
of 75% was imposed. Each large mining block of size 250m by 250m was depleted based on a 
combination of rim tunnels, stope tunnels and stope slashing. An average daily call of 3150 
treatment tons was imposed on the project by management. A simplified treatment model was 
assumed for this study based on a linear relationship between the proportion of ore and waste. 
Recovery efficiency improved as the proportion of kimberlite increased. A plant surge capacity 
constraint was included to asses the impact of varying dyke thickness on the feed rate variability 
using an ‘event-based’ simulation. A total stockpile capacity of 3000 tons was created, which 
included capacity from an underground storage bin.  
 



 0  500  1000  1500 

X (m)

 0 

 1000 

 2000 

 3000 

 4000 

Y
 
(
m
)

Scenario 1

 0  500  1000  1500 

X (m)

 0 

 1000 

 2000 

 3000 

 4000 

Y
 
(
m
)

Scenario 2

 0  500  1000  1500 

X (m)

 0 

 1000 

 2000 

 3000 

 4000 

Y
 
(
m
)

Scenario 3

 0  500  1000 1500 

X (m)

 0 

 1000 

 2000 

 3000 

 4000 

Y
 
(
m
)

Vbod

Scenario 1 (75m) Scenario 2 (50m) Scenario 3 (25m)
Kriged Kriged Kriged

Mean Thickness 1.70 1.70 1.70 1.70
Variance Thickness 0.11 0.11 0.13 0.23

V-bod

(75m) (50m) (25m)

Thickness Variability

 
Figure 2 depicts the thickness variable for all three scenarios plus the V-bod 

 
The IEM was designed so that the financial model was directly correlated with the mining and 
treatment database enabling all production estimates, revenues and costs to be accumulated from 
a blast by blast basis to a daily basis and collected quarterly and annually. These production 
outputs were inputs into the cash flow model. Conventional DCF valuation was used to calculate 
NPVs at an initial discount rate of 10%. NPVs were calculated in real money terms (after 
royalties and tax deductions, allowing for inflation). Economic forex modelling was not included 
in this study but the reader is referred to an earlier paper for more detail on the use of real options 
and forward modelling of forex (Nicholas et al, 2006). To simplify matters, an exchange rate of 
1.21 CAD$/ US$ was fixed over the life of mine.  
 
Two evaluation processes, a bottom-up and a top-down approach, were computed for three 
different scenarios, viz. 75m, 50m and 25m sampling grids to show the information effect 
(Armstrong and Champigny, 1989) on estimating NPV. Outputs from each scenario were 
compared to the V-Bod to quantify the error in the NPV estimates. A technical discount rate was 
calculated for each scenario to quantify the average risk premium that should have been used in 
the DCF calculation in order to attain the same NPV estimate as the V-Bod. Sensitivity analysis 
and MC simulations were run on the ‘global’ top-down evaluation methodology in order to 
compare the output from these two techniques with the results from the IEM (bottom-up) 
approach.  
 

RISK MODELLING 
 
The NPV of each scenario was calculated using the top-down versus bottom-up techniques to 
demonstrate the impact of measurement scale. 
 



The IEM utilized a bottom-up evaluation technique that was based on depletions of the ore body 
at a local SMU scale of 4m by 4m. Production tonnages and grades were calculated from these 
blasts on a daily basis and accumulated monthly, quarterly and annually. Each SMU was 
analogous to a mine blast that was assessed whether it met the necessary mining and plant criteria 
before either contributing to the call of 3150 tons per day or being trammed to the waste bin if it 
comprised more than 70% waste. The increased short-scale variability of the dyke resulted in the 
mining and treatment constraints being hit more often than estimated in the top-down approach. 
Annual cash flow forecasts were derived from accumulations of daily depletions based on 
localised resource estimates.  
 
The top-down evaluation approach refers to annual forecasts that were calculated from depleting 
resource estimates through a global mine plan. The average resource values for each year were 
run through the same mining and treatment constraints as imposed on the bottom-up approach. 
However, instead of accumulating actual tonnages from short-scale depletions, the top-down 
approach assumed a fixed daily plant call of 3150 tons per day would be achieved, then 
multiplied depleted carats with an average recovery factor per large-scale mine block. These 
production estimates were run through the financial model as before, providing NPVs. Figure 3 
demonstrates that the two evaluation approaches provided materially different NPVs. 
 

Scenario 1 (75m) Scenario 2 (50m) Scenario 3 (25m)
Kriged Kriged Kriged

Global Annual NPV 91.6                    80.1                    73.9                   1.5             
Local Annual NPV 32.9                   31.4                  28.3                 1.5            
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Figure 3 compares the NPV results between the top-down and bottom-up evaluation methods 

 
Dilution loss, plant throughput and recovery loss can have a significant influence on NPV by 
affecting the number of carats produced. A simplistic sensitivity analysis shows the impact on 
NPVs for a given range around the chosen input. All other input variables are held constant so as 
to isolate the impact of the chosen variable. Figure 4 portrays sensitivities for Scenario 1 (75m). 
Figures for Scenarios 2 & 3 have not been included as they are very similar to Figure 4, below. 
 



96

(50)

– 

50

100

150

200

85% 90% 95% 100% 105% 110% 115%

N
PV

 (m
ill

io
ns

)

Dilution Loss Throughput Recovery Loss  
Figure 4 shows the sensitivity of NPV due to changing input assumptions of  ± 15% 

 
The sensitivity range (-15% to +15%) is not based on any probabilistic data and is not intended to 
provide any information on the chances of an event occurring. Sensitivities can also be skewed by 
the fact that they are based on an absolute value and more than one sensitivity is not usually 
shown on a single graph. Limitations of sensitivity analysis are many; however, if these 
limitations are recognized, it can assist in highlighting areas that require further investigation. 
 
MC simulations are generally used to provide confidence intervals around an expected output. 
Expert opinions were used to define the probabilistic ranges for dilution loss, throughput and 
recovery loss. Non-parametric, triangular distributions were used to parameterize the input 
probability distributions. No statistical correlations were included between the three variables, 
which is recognized as a limitation of this analysis. 
 
Figure 5 demonstrates the cumulative probability plot for NPV based on simultaneous random 
draws from dilution, throughput and recovery probability distributions. Scenario 1 (75m) is 
shown as the variance around the NPV was similar for all three scenarios. 
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Figure 5 shows the Monte Carlo simulation output for NPV based on all three variables 



INCORPORATION OF RISK IN DECISION-MAKING 
 
Given the results of the three approaches to modelling risk, how should the decision-maker 
proceed? Results from the sensitivity analysis suggests that the range of NPV lies between 
negative CAD$ 5 million and positive CAD$ 200 million, which is considerably varied and has 
little confidence associated with these values. The output from the MC analysis is more 
informative as it allows the derivation of a NPV distribution associated with a confidence limit, 
although there is some debate about the rationale of a NPV distribution. NPVs may change 
substantially if correlation was included between input probability distributions. However, little 
evidence was available to calculate the source of these Pearson correlation coefficients and thus, 
independence was assumed between variables. An extensive NPV range (CAD$ 50 – 154 
million) was generated at a 90% confidence limit using MC simulations with a probability of less 
than 5% of having a NPV below CAD$ 50 million.  
 
The IEM approach requires more development and modelling time than the other two techniques 
but provides a unique platform to incorporate technical linkages between variables at the 
appropriate scale, specifically focusing on relationships between resources, mining and treatment 
processes and the cash flow model. Less subjectivity and greater transparency of risks and their 
associated impacts are credits of the IEM approach. Both the bottom-up and top down evaluation 
approaches were conducted on the IEM and utilized DCF to derive NPVs. Although limitations 
of using DCF are well known, it serves as a baseline for project comparisons.  
 
The amount of technical risk that should be added to the weighted average cost of capital 
(WACC) to arrive at a discount rate has not been quantifiably defined in the literature reviewed. 
To address this issue, an average technical discount rate can be derived using the IEM and V-Bod 
to ‘back calculate’ a rate that equates the NPV for each scenario with that of the V-Bod. This 
implied that any deviations in NPV for each scenario compared to the V-Bod, occurred only as a 
result of geological variability. An algorithm was executed, which performed a sequential search 
for each year in the DCF model and attempted to find the average discount rate over the life of 
mine that discounted the cash flows back to the V-Bod NPV. This average computed rate 
reflected the technical discount rate premium that should be added to the WACC to account for 
project risk in a conventional DCF evaluation, the results of which are shown in Figure 6.  
 

Global (‘top-down) vs Local (‘bottom-up’) Discount Rates
Scenario 1 (75m) Scenario 2 (50m) Scenario 3 (25m)
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Global Annual NPV 8.19% 7.04% 6.49% 0.0             
Local Annual NPV 2.69% 2.51% 2.25% 0.0           
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Figure 6 compares the discount rates between the top-down and bottom-up evaluation methods 



CONCLUSIONS 
 
The authors demonstrated that three evaluation approaches to mineral project valuation could 
result in materially different NPVs. Sensitivity analyses in the order of ± 5%, 10% and 15% were 
conducted on the top-down estimates and produced NPVs ranging from negative CAD$ 5 million 
to positive CAD$ 200 million. These results are considerably varied and incorporated no 
correlation between resources estimates, production processes or the cash flow model. MC 
simulations, based on input probabilities derived from expert opinion, yielded NPVs ranging from 
CAD$ 50 – 154 million, outside the NPVs from the IEM (CAD$ 28.1- 32.7 million). The 
respective NPVs for the three sampling campaigns (75m, 50m and 25m) conducted on the top-
down evaluation method over-estimated the NPV derived from the IEM method in the order of 
160% to 180%. Although both the top-down and bottom-up evaluation methods over-estimated 
the V-Bod NPV of $1.55 million by as much as $90.6 million and $31.1 million respectively, the 
IEMs results were closer to the V-Bods NPV.  
 
The difficulty of valuing managerial flexibility in a mineral project usually results in mineral 
assets being undervalued using a traditional DCF approach, (Davis, 1995). However, in this 
study, limited sampling information resulted in a smoother, more continuous estimate of dyke 
thickness for both the top-down and bottom-up evaluation methods relative to the V-bod ‘reality’. 
The acquisition of additional sampling data is expected to further reduce deviations between 
estimated NPVs and the V-Bod. However, the likelihood that closer spaced sampling grids will 
actually be drilled is low due to high sampling costs, project delays and other practical 
limitations. The objective of applying an IEM approach is not to recommend closer spaced 
sampling grids but to find a balance between the required sampling resolution and the derivation 
of quantitative estimation errors in NPV. Technical discount factors were calculated to account 
for differences in NPV between the V-Bod and estimated resources. These discount rates may be 
considered as correction factors that are applied to evaluation scenarios where sampling data are 
limited and confidence limits around estimated NPVs are required.  
 
The consequences of estimating into small blocks based on wide-spaced drilling are 
acknowledged (Armstrong and Champigny, 1989) and resulted in lower kriging variances for 
dyke thickness and v1 due to the smoothing effect, which results from a lack of sampling data. In 
this case, additional sample data would detect higher v1 and thickness variabilities that would hit 
the mining and treatment constraints more often and result in lower NPVs for the bottom-up 
method, resulting in even greater differences compared to the top-down method. Further work is 
underway to consider the information effect on estimation variances and their impact on technical 
discount rates. The IEM bottom-up approach facilitates an understanding of the sequence of 
events and their associated uncertainties. These aspects should be included into risk models as 
drivers of the simulations, rather than only generating probabilities of a risk occurring or focusing 
exclusively on a NPV output (Dowd, 1997). While many investment decisions are based on one 
or more financial metrics, often too much emphasis is placed on the outcome rather than the 
process itself. Bratvold and Begg (2002) recognized that people assumed that good outcomes 
imply that a good process was followed. Often the converse was assumed too. These assumptions 
can be very misleading and compromise the development of a sound decision-making process. 
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