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ABSTRACT

Geometallurgy is an emerging, cross-disciplinary field that integrates
spatial models of rock properties with time-based outcomes of mining
and treatment processes. Geometallurgical variables include any rock
property that has a positive or negative effect on the business. Some of
the more critical geometallurgical variables include recovery, grindability,
throughput, power consumption, mineralogy and content of deleterious
materials. These variables drive project costs and revenues in a
fundamental way and thus geometallurgy has potential to positively
impact on the value of strategic and tactical decisions across many
mining organisations.

Geometallurgical models, like traditional grade-only models are based
on samples collected from the mineralised and non-mineralised regions of
the deposit. The nature of some non-grade variables, particularly those
that are dependent on the ore treatment processes, requires special
consideration during sampling and subsequent spatial modelling. Failing
to objectively consider the characteristics of variables may seriously
compromise the validity of the sample selection, sample treatment, data
models and the subsequent decisions. In addition to addressing the vexed
question of collecting an ‘unbiased and representative’ sample, the
sampling and modelling approach must consider issues of scale, both
geostatistical support and also the relationship between bench-scale data
and operational-scale mineral processing performance.

This paper proposes a framework (the Primary-Response framework)
for the classification of geometallurgical variables. This framework is
designed to assist with developing sampling approaches and identifying
the most appropriate spatial modelling approach. The proposed
framework can also help identify the risks associated with designing,
sampling and modelling of both types of geometallurgical variables.

The Primary-Response framework divides variables into two
categories; primary variables and response variables. How a variable is
classified in this framework depends on the degree to which the variable
reflects either an intrinsic attribute of the rock (‘primary’) or its response
to measurement processes (‘response’). Depending on the classification
in this framework, appropriate sampling and modelling decisions can be
made to minimise the risk associated with the incorrect treatment of the
variable. In particular, the authors argue that for response variables, the
approach taken to building spatial models may need to be different to
conventional linear averaging approaches (for example kriging).

INTRODUCTION

The value proposition of geometallurgy is simple and compelling.
By improving the understanding of the spatial nature of relevant
rock properties the mining and ore treatment operations can be
improved, both at the design phase and operation of mineral
projects. In theory an exhaustive description of the rock and its
performance under the conditions imposed by mining and ore
treatment would simplify the problem of predicting physical and
financial outcomes by reducing the number of unknowns in the
value-generation process.
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Because analytical and mathematical technology has
advanced, metallurgical, mining engineering and geological
professionals are now able to measure and manage a much wider
range of rock attributes, bringing our knowledge closer to the
ideal of ‘exhaustive description of the rock’. It follows that
creating spatial (block) models of these additional attributes will
allow business planners to take advantage of the additional detail
to make better decisions about value.

Once generated, spatial geometallurgical models may be used
in numerous ways, including improved:

e mine and process design and thus more efficient capital
allocation,

® mining project valuation — potentially forming the basis of
strategic advantages for early leaders in this field by enabling
revaluing of assets,

e processes of predicting and increasing return from more
efficient sequencing/scheduling;

e forecasting of revenues and costs,

® process optimisation (with additional benefits from being
more proactive), and

e tactical improvements to planning (block selection) and
blending strategies in the short to medium term.

The integration of these geometallurgical models into the
evaluation and optimisation of reserves is vital to ensure value
realisation from geometallurgical initiatives. Useful approaches
of including multiple estimates in block models for mine
planning and reserve evaluation and have been covered by
several authors (Nicholas et al, 2006; Nicholas et al, 2007;
Carrasco, Chiles and Segurét, 2008; Dowd, 1976; Deraisme and
Fouquet, 1983) and will not be dealt with in any detail in this
paper.

The design and successful execution of an appropriate
sampling strategy is the foundation of the modelling and
estimation process both for grade models and more sophisticated,
multivariate geometallurgical models. Sufficient numbers of
samples of appropriate size, ie geostatistical support, are required
from major domains in the orebody so that both the average and
variability of the geometallurgical variables can be spatially
modelled with a known degree of uncertainty. In addition to
collecting enough samples, however, the geometallurgical
sampling program must also consider the relationship between
bench-scale testing and operational-scale performance, and the
implications for the minimum mass of samples required for
metallurgical tests.

Once the sampling strategy has been implemented, the spatial
model can be constructed. As described in Dunham and Vann
(2007), applying classical linear averaging resource estimation
techniques (including kriging) may not be appropriate. Many of
the most important geometallurgical variables are clearly non-
additive, therefore the modelling (and subsequent scheduling and
analysis) must be appropriately tailored for the nature of the
variable in question.

Designing the sampling and spatial modelling approach for
some geometallurgical variables can be extremely complex,
whereas other variables are much simpler to manage. When
possible, distilling the simple variables from the complex variables
is beneficial and assists with developing an understanding of the
value generation process that is being modelled. One possible

Perth, WA, 17 - 19 August 2009 109



S COWARD et al

pathway for implementing geometallurgical modelling is to
estimate, wherever possible, additive variables that enable the
prediction of required non-additive properties. To do this
effectively, however, requires a framework to classify the
geometallurgical variables, a proposed classification system is
now discussed.

PROPOSED PRIMARY VERSUS RESPONSE
FRAMEWORK

The concept of directly measured variables or proxies for
metallurgical performance was discussed in Dunham and Vann
(2007). Building on these concepts, the authors now propose a
two-fold classification scheme (depicted in Figure 1):

Response

Primary
Mass Weight Throughput
Rock Density RQD Recovery
Colour Ernetie Grindability
Grain size Side Distribution

Frequency

Alteration Particle Density /

Distribution

Energy or Process Rock Response
Properties

FIG 1 - The Primary-Response framework.

Primary Rock

Properties

1. primary variables — these are attributes of rock that can be
directly measured (metal and mineral grades being
examples); and

2. response variables — these are attributes of rock that
describe the rock’s responses to processes, for example
throughput, or recovery.

In our proposed classification scheme, one can consider a
property as primary if the property is intrinsic to the rock, for
example: grain size, mass, metal grades and mineral grades.
Most primary variables are additive or can be easily manipulated
to be treated as additive, eg metal grades per unit mass, mineral
grades per unit volume, etc. The mean of such attributes can
usually be correctly estimated by a simple linear average, from
both a sampling (compositing) viewpoint as well as in the
block-modelling process.

On the other hand, response variables are expressed as a
response to a process or the application of energy, for example:
grindability, metallurgical recovery, intact rock strength and
plasticity. Due to the multivariate nature of these variables the
resulting distributions of the measured data can be complex
(non-normal, negatively skewed, bi-modal) and hence they
cannot easily be combined nor will arithmetic averages produce
a valid estimate of the outcome from the combination of a
number of samples or blocks. For example, combining one tonne
of rock with a measured recovery of 60 per cent with one tonne
of rock with a measured recovery of 90 per cent does not
necessarily result in two tonnes of rock with a recovery of 75 per
cent.

The distinction between primary and response is not always
obvious. Take for example the mass of a sample versus the
weight of that sample. The mass is a primary characteristic
whereas weight is a response to gravitational energy. A sample
weight is dependent on the gravitational field (energy). Consider
weighing the same sample on the moon!

In an ideal testing framework the response variable would be
independent of the testing procedure. This can be considered
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true, to an extent, for grade assays that theoretically produce
results whose mean and variance is essentially a function of the
metal contained in the sample treated and not the parameters, or
methods used for the assay. In reality, and particularly in the
testing of the physical characteristics of rock samples, the result
obtained is clearly dependent on the parameters of the testing
process.

A primary objective of geometallurgy is to spatially estimate
variables into block models, thus the primary-response
distinction has important ramifications. The question of support
and scale is always critical when consolidating or combining
variables. Some variables cannot be linearly averaged. The
property that allows the mean of some variables to be calculated
by a simple linear average is known as ‘additivity’. To
legitimately average values of an attribute without generating
biases, we must ensure that the attribute we are dealing with is
additive. This is true for simple arithmetic averaging, and for
other linear combinations, such as weighted averages. Kriging
(Matheron, 1963) and other common spatial estimators based on
linear averaging all presume additivity of the attribute being
estimated. Using estimators that assume additivity for
non-additive variables will generate results that are potentially
biased in ways that are complex and possibly material. This is
also true of non-linear geostatistical estimators such as uniform
conditioning, multiple indicator kriging, and other procedures
such as conditional simulation which are built upon kriging
(Vann and Giubal, 2000).

Response variables are usually complex and are typically
non-linear, either through some categorical relationship or
through a non-linear formula (Figure 2). This does not suggest
that all primary variables are additive, but that they lend
themselves to easier assessment of their underlying properties.

The implied non-additivity of response variables can be simply
illustrated through Jensen’s inequality (Hastings er al, 2005). As
illustrated in Figure 2, when the relationship between two
variables is non-linear, a simple linear average will over- or
under-state the true value. The sign of the error (over/under) is
dependent on the local behaviour of the non-linear relationship
(convex or concave). If the relationship is very complex the
prediction errors can also be very complex and difficult to
determine.

Response
Response

variable variable

Linear average [Jof data ©
understates response

Linear average [] of data ©
overstates response

FIG 2 - Jensen’s inequality.

CONSEQUENCES OF THE PRIMARY-RESPONSE
FRAMEWORK

The Primary-Response classification framework provides an
insight into how we should sample and estimate different types
of variables. Clearly if we are interested in a primary variable the
sampling, estimation and evaluation approach will be much
easier than if we are dealing with a response variable where our
approach must also incorporate an understanding of both the
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measurement systems (ie the experimental framework such as
parameters in a flotation test) and the complexities of the
non-additive relationship of the variable. We cannot simply add
two float tests together, divide by two and get an ‘average
flotation’ result.

The Primary-Response framework encourages us to identify,
measure and model primary variables wherever possible. If we
can reduce a response variable down to primary components that
(substantially) control the rock behaviour under a given
experimental approach we can simplify the problems of
sampling, estimation and evaluation (Carrasco, Chiles and
Segurét, 2008). If this strategy is adopted then, for example,
instead of dealing with two potentially non-additive and complex
unknowns (ie the rock response and the test/measurement
system) we can sample and model the primary variable and then
manage the experimental design under a series of different
scenarios (eg using different reagents or different grind sizes).
This is particularly beneficial when we are later faced with
up-scaling the rock response variables and the variability of the
parameters of the test used to generate the response. An example
follows below.

Water consumption in a treatment process is often not a cost
driver, but rather a strategic consideration when water supply is
scarce. Ultimate water consumption will be a function of several
variables, including rock clay content, the degree to which the
clays are altered and the liberation of the clays which in turn is a
function of the fineness of the grind. Primary variables such as
clay mineral content and alteration state can be estimated into the
blocks and then the transfer function that uses the estimate of
clay content and resulting grind can be applied to these estimates
at the block scale to generate the response variable ‘water
consumption’.

The variance of gold grade based on small, core-sized samples
of a gold deposit will be much higher than the variance of the
gold grades obtained from a set of bulk samples from that same
deposit. Measurements made on a population of small samples
taken from a deposit will exhibit a different variance to the
measurements made on a population of large samples taken from
the same deposit. It has been shown that the variance of the
population is dependent on the scale or support for that
population. This is known as the ‘support effect” as described by
Krige’s relationship (Krige, 1951; Matheron, 1963). The same
principle is true for both rock responses (ie response variables)
and the test methodology used to determine those responses (eg a
bench-scale flotation test versus a full-scale flotation cell). In the
case of the testing methodology the impact of the ‘time support’
that is used to define the population of the tests also needs to be
considered.

The relationship that exists between the primary variables,
(that influence the rock response to a given experimental
process), and the measured response is materially dependent on
the parameters and scale (support; physical and temporal) of the
testing process. Hence another aspect to the Primary-Response
framework is required. This can be considered as the ‘third
vertex’ of the Primary-Response framework, and is the nature of
the process that is used to generate the rock response. Given that
the observed variance of the variables is scale-dependent,
characterising the covariances between each of these three
aspects of the framework (Figure 3)° at each scale for which the
data is to be used in the planning and estimation process is
important. It must be understood that as we change the scale of
the rock that we are measuring, not only will the measured

5. Generally the concept of correlation is well understood and covariance
is merely a scaled version of correlation. Pearson’s correlation
coefficient between two variables x and y being the covariance
divided by the product of the standard deviation of x and the standard
deviation of y. Thus Pearson’s correlation coefficient is a rescaled
covariance to the interval [-1,1].
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FIG 3 - Covariances in the Primary-Response framework.

attribute change, but the relationship between each of the vertices
of the triangle depicted in Figure 3 will also change.

In some situations strong correlations between additive
variables may require that their formulation be adapted to ensure
they are truly additive. For example metal ‘quantity’ (per unit
volume) and density can usually be dealt with as additive
variables, but this assumes that there is little or no correlation
between density and grade, eg in low sulfidation gold deposits.
However, if there is a strong correlation between grade and
density and if density variations are large, as in many base metal
deposits, special attention needs to be paid to the way in which
the grade variable is expressed and how it is averaged. In this
specific case the problem can be overcome by converting the
volumetric grades should be converted to total weight of gold in
each block and then expressing the grades as mass of gold per
tonne of rock.

The Primary-Response framework provides a useful way of
classifying rock variables, but its true value lies in providing a
framework for coherent and structured investigation of the
underlying nature of the variables that are being measured and
modelled. This understanding will hopefully reduce the
probability of making errors, inform sampling strategy, and
increase the value derived from geometallurgy.

SELECTION OF GEOMETALLURGICAL
VARIABLES

In an ideal world the geometallurgical model would contain
accurate, precise estimates at a block scale of those rock properties
impacting most on the value of a project. These properties would
be additive and linear in nature and thus be straightforward to
estimate by kriging and other linear averaging methods (Dunham
and Vann, 2007). Ideally, the rock properties would be primary
under the classification proposed above and thus be independent
of changes either to the mining method or to the process plant
configuration. Mining method and process plant configuration
could be directly incorporated in the mining block model and
translated into process response independently of the changes in
the resource block model, cut-off policy, and/or the mine or plant
design. This ideal is not feasible in practice but provides a good
target. Deviations from this ideal, by attempting to directly
estimate response variables for example, necessitates an acute
awareness of the implicit assumptions made and the risk and
implications that they have on the use, and hence value, of the
model. In reality, this may be difficult to demonstrate in a
resource model that is to be independently audited.

All scientific sampling should have the end use of the data in
mind. In the case of geometallurgical data, the variables that
impact most on the processes of mining and treatment (either
positively or negatively) must be identified to determine the
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variables that need to be measured. The required variables will
be specific not only to commodity and deposit type, but also
potentially to the mining and processing technologies envisaged.
There are a number of ways to identify and then target and
prioritise the required variables in the sampling strategy. A
number of possible approaches to geometallurgical variable
selection are now considered below.

In a ‘brownfields’ case, identifying and modelling of
geometallurgical variables is greatly assisted by the fact that an
existing processing plant can provide us with data that can be
used to assess the effectiveness of both the geometallurgical
sampling and the models we build upon that sampling.
Geometallurgical variable selection can be driven by analysis of
existing mine performance, in practice by relating periods of
specific metallurgical performance to specific rock properties.
This requires good management of both plant performance data
and mine depletion records and therefore is greatly aided by a
robust reconciliation systems. One implication of the increased
use of geometallurgy is that operational reconciliation systems
will become more critical, and must be focused on a broader
array of variables than the traditional tonnes and grade.

Because many mines treat more than one ore source at a time,
reconciling process performance back to ore feed properties and
then tracking that back to in situ locations and lithology types is
never straightforward. Such reconciliation, even if incomplete,
can be of great use in identifying areas of importance and the
potential predictive power of different geometallurgical
variables. Where the model and reality diverge, work can be
undertaken to understand the reasons for the discrepancy. In fact,
such reconciliation discrepancies have been used to factorise the
models to assist in short-term forecasting.

The authors point out that such discrepancy may arise out of
the fact that linear models are being assumed for variables with
non-linear behaviours. There is therefore some attendant risk in
factorising models to account for non-linearity. To illustrate this
point Figure 4 shows a diagrammatic representation of Jensen’s
inequality, where the solid curve and dashed dotted line represent
the true (solid) and modelled (dashed dotted) relationships

between a grindability index and the percentage recovery. The
model is based on an assumed linear relationship derived from
two sample points (indicated by two squares) whereas the
underlying true relationship is indicated by a curve that is
concave to the origin (the solid curve). In order to get the linear
model to ‘work’ or to fit data obtained from the current operation
a so called ‘efficiency factor’ of just over ten per cent has been
added (ie factor the linear model by about ten per cent).

If, for example due to production pressure, it is decided to
move to an area of the mine that has a better grindability index, it
would be expected, based on our linear model and the additional
impact of the ‘efficiency factor’, that recovery would increase to
the high 90 per cent’s. In reality a figure in the high 80 per cent’s
is more likely due to the non-linear relationship. Had sufficient
sampling been carried out to model the true underlying
primary-response behaviour the mistaken high expectation may
have been avoided.

The point made in the above example is that when sampling
for geometallurgical response variables we not only have to
characterise the mean and variance of the variable but also the
nature of the non-linear relationship of the primary and response
variables. Assuming linear relationships between primary and
response variables is risky and can lead to significant error. This
is the case for simple bivariate relationships and will also be the
case for spatial interpolation. Furthermore, simple (and
simplistic) factoring of the results may apparently correct the
results over a limited range of values, but could cause unintended
biases away from that range.

For ‘greenfields’ projects selecting the right geometallurgical
variables is a little more difficult. In this case the processing
options must be clarified, and then inferences about ore/process
impacts might be based on assessment of a matrix of deposit/
process combinations that are similar. This approach may
necessitate collection of more than one suite of samples to
characterise geometallurgical variables; for example, in a copper
deposit, some samples will be required and be prepared
specifically for conventional flotation circuits and others required
for assessing leaching options.
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FIG 4 - Assuming an ‘undefined efficiency factor’ to account for the non-linear relationship between grindability and recovery,
can lead to a false expectation of upside recovery at higher grindability.
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Even in the case of a single processing option we must take
care to consider that there will usually be various processing
options for the same technology (grind-recovery relationships for
conventional flotation processing being an example). It is also
worth exploring the role that metallurgical process simulation
can play in unravelling these complex relationships, and as each
of the process models may require calibration through sampling
and test work, additional material may be specifically required.

SAMPLE MEASUREMENT AND METROLOGY

Once samples have been obtained and in some cases divided into
different portions (ie for different types of analysis and test
work), they will be dispatched to various laboratories. As usual
due care needs to be taken to ensure that they are not mishandled
or allowed to become contaminated either with other samples or
through contact with other reagents that might compromise the
results that are obtained. For geometallurgy, especially physical
testing it is important that the physical integrity be preserved. As
an example kimberlite typically contains several species of
swelling clays. Hence the samples need to be wiped dry
immediately after drilling, and packed and kept dry until tested,
otherwise measurements of rock strength and degree of alteration
will not reflect what will be encountered when mining.

For geologists who may be used to only requesting grade
assaying, it is worth noting that the numerous geometallurgical
tests that can be performed have rigorous requirements for
calibration. This is especially true of mass measurement, and
screening procedures which should be repeatedly calibrated, and
ideally certified, with results of calibration checks being
recorded.

It has been shown (Stark, Perkins and Napier-Munn, 2008;
Napier-Munn et al, 1999) that the potential for operator error in
physical testing is substantial. This suggests that any sampling
procedure should minimise factors that depend on operator input.
A good example of this is flotation test work, where historically,
operator influences can be significant. Consistency of test work
is very important. The relationship between primary and
response variables is strongly influenced by the testing regime
therefore if the testing approach is inconsistent our ability to
model response variables from primary variables is greatly
reduced.

CONCLUDING REMARKS

A spatial model containing valid estimates of the geo-
metallurgical variables provides a platform for improving mining
project return in many different ways. Acquisition of the right
number and size of samples that can be appropriately tested to
provide the right data for the spatial estimation of these variables
is perhaps one of the greatest challenges faced in the generation
of the spatial geometallurgical model.

The Primary-Response framework as presented here provides
a useful basis upon which a strategy for sampling design and
execution can be built. It is advisable to think through the
geometallurgical modelling requirements prior to design of
sampling, and the Primary-Response framework can help in this
regard.

Since primary variables are in general additive, routine linear
averaging estimators such as kriging seem appropriate. However,
direct estimation of response variables by linear averaging has
potential pitfalls. A preferred approach is to estimate primary
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variables wherever possible. Note that if the range of values for
which response variables are required is relatively small, the
non-linearity may not have a material effect.

In addition to the usual good practices in sampling,
geometallurgy also requires that the physical integrity of samples
be carefully managed in many instances. The range of processes,
ore responses, and testing methods can be large and the options
considered may have differing geometallurgical sampling and
modelling requirements.

Insufficient or incorrect information on the spatial location and
variability of the rock properties that impact most on the process
will expose mining operations to unnecessary risk. The effort and
time required to acquire the data to build valid geometallurgical
models that can be integrated into the decision-making process
throughout the mine life cycle will generate rewards that are
many times larger than the costs incurred.
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