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ABSTRACT 

Many recently developed tests permit faster characterisation of a broad range of rock properties 

in much greater detail than was possible even a few years ago. These data are being used to 

build geometallurgical models, and predict processing response properties on a spatial basis.   

Scenario Based Project Evaluation (SBPE) is a stochastic approach to modelling the mining 

project value chain, which incorporates sources of uncertainty, multiple operational 

configurations, and future scenarios to generate a plausible range of project outcomes. This 

approach facilitates the use of the richer information provided by geometallurgical models and 

allows for ranking of sources of up and downside risk to the project. The approach also 

provides a platform for exploring the impact of numerous risk mitigation strategies, supporting 

robust decisions, increasing project resilience and improving the probability of mining project 

success.  

Developing and using value chain models to evaluate geometallurgical recovery factors will 

markedly improve the probability of developing resilient project designs, making robust project 

decisions and hence greater project success by: 

 Facilitating rapid processing of large and potentially un-wieldy geometallurgical models, 

making the SBPE methodology far more accessible; 

 Providing a means to assess the impact of mineralisation variability on process 

performance; and 

 Ensuring that the impacts of uncertainty, variability and constraints in project evaluation are 

explicitly quantified and thus suitable addressed.   
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INTRODUCTION 

The overall imperative of any business is to continue as a profitable concern. In mining, this 

requires the acquisition of potentially profitable resources, designing and executing a profitable 

configuration and operation of existing mining projects, and successful disposal of projects that 

have declining profitability. The management of mining projects requires that decisions be 

based on „true knowledge‟. True knowledge according to Demming (1986) begins with 

understanding the system, requires a quantitative understanding of the impact of variance, 

addresses the limits to knowledge and is tempered by insights into human nature and behaviour.  

Porter (1985) suggests a value chain model can represent the value accrual in the system. A key 

concept in the value chain model is that, although the financial transaction (point of cash flow) 

in a value chain is easy to identify, it is not the only value-adding step. Value is created 

throughout the value chain even though in some steps there is no readily identifiable cash 

transaction. The value chain approach presents an opportunity to explore the first three 

requirements for true knowledge as posited by Demming (Demming, 1986) i.e., understanding 

the system, understanding the impact of variance on the system and exploring the impact of 

uncertainty. Scenario Based Project Evaluation (SBPE) is an approach to mining value chain 

modelling depicted in Figure 1, which can be used to explore, quantitatively, the interactions 

between the uncertain and variable properties of the mineralisation, the constraints and the 

flexibility engineered into the mining project (Vann et al., 2012). It also presents mining firms 

with a platform to explore the evolution of important, project relevant, aspects of the future 

(prices, taxes, demand, revenues etc.) by using the SBPE approach within a scenario framework 

(van der Heijden, 2005).  

 

Figure 1: A value chain model for a mining project adapted from Vann et al (2012) 

The value chain model used in SBPE is both holistic – covers the full extent of the value chain 

from source to final product – and integrated in that it correctly models the interaction of 

variability, constraints and feedback loops. This requirement applies to flows of goods, cash 

and information through the value chain at the scale relevant to the decisions being considered. 

Several iterations of project configuration, termed alternatives, and several permutations of 

future outcomes, termed scenarios can be evaluated by simulating the total value chain model.  
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The outputs from this process, which by design is not optimisation, can be used to search for 

plateaus of value where the configuration might not yield the highest financial return (e.g., 

NPV, IRR, payback) but on average the most unvarying, or resilient, financial return in the face 

of pertinent sources of uncertainty and variability. These sources of uncertainty and variability 

typically arise from the mineral resource, process operation and future operating contexts.  

The SBPE outputs should assist in selecting the configuration that is most robust in terms of the 

expected project returns and will also help to improve the understanding of the thinking that 

underpins the sources of value in the project. This systems thinking process is akin to synthesis 

rather than analysis (Meadows, 2008, Senge, 1994) in that outcomes result not just from the 

summing of the function of each of the systems components but rather of the dynamics of the 

entire system. It gives experienced professionals an opportunity to express, in a quantitative 

systematic framework, the range of expected project outcomes for a given configuration or 

alternative. This approach has the added benefit of being able correctly to capture and reflect 

the incremental value that can be attributed to activities that reduce uncertainty of project 

outcomes (e.g., additional sampling, drilling, geometallurgy test work) and increase the system 

resilience to changed inputs and or operating strategies. 

 “Essentially all models are wrong but some are useful ”(Box and Draper, 1987). Models used 

in the value chain are by necessity wrong in that they are not the real value chain, but aim to 

reflect the patterns that explain how value is either increased or decreased through the value 

chain. These patterns include counterintuitive outcomes that result from the non-linear and 

biasing impacts of the interaction of variability with constraints in the system. Ideally the model 

should provide a platform for quantitative feedback, over the life of the operation, of the 

interaction of the variable and uncertain mineralisation with the flexibility and constraints that 

are embodied in the project configuration. This quantified view of the operation can be used to 

identify the potential impact that flexing the project‟s design and execution might have, and to 

„re-perceive‟ the value (or not) of the envisaged project. 

 A key aspect of using a model to aid in understanding a project is to incorporate the main 

sources of uncertainty and allow these to interact at the correct scale (both spatial and temporal) 

with the flexibility, stocks and constraints that are a function of the design and operation of the 

project. Three sources of project uncertainty can be distinguished and which need to be 

incorporated in different ways into the value chain model: 

1- Spatial uncertainty – i.e. the resource model. Additional sampling can reduce this 

uncertainty. It can be quantified by a suite of spatial simulations of the mineral 

resource. These need not be restricted to grades and can include, inter alia, mineralogy, 

geometallurgical parameters and deleterious components. 

2- Operational uncertainty – this uncertainty arises from the interaction of the 

mineralisation and the operation of the mining and processing plant. Flexibility and 

constraints are set by the process configuration and these can be adapted by design and 

operational strategy. This uncertainty can be replicated by stochastic process 

simulation. 

3- Future uncertainty – the context in which the project will run, this cannot be 

predicted with any reliability, one functional method is to use the Scenarios approach 

developed by Wack, Sunter and van der Heijden (Van der Heijden, 2005). In this 

approach it is possible to set up several plausible internally consistent futures in which 

the project could operate and then use these to calibrate reasonable values for the 

parameters of relevant distributions.  
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METHODOLOGY 

The approach suggested here is based on the development of an integrated value chain model 

that includes a model of the mineral resource, models of the mining and processing activities 

(i.e., the value chain) and models of the future context in which the operation might operate 

(scenarios). These models are linked together to provide a platform for simulating the operation 

and evaluating how mineralisation uncertainty and variability propagate through the value chain 

over the life of the operation. The objective of this process is to determine more robust 

development and operational strategies. A quantitative analysis of the interaction of 

mineralisation characteristics with mining and processing provides insights that can be used to 

improve the probability of project success in a number of ways. This section describes the three 

main models that are considered, and the way in which they are linked and simulated.  

Models of Mineralisation Uncertainty 

Data derived from samples taken from a mineralisation (and its environs) can be used to 

generate estimates of values at unsampled locations. Linear estimation techniques, such as 

kriging (Journel and Huibrechts, 1978) generate models that are smoother than reality but are 

useful and appropriate for developing ultimate pit designs and long-term mining sequences. 

However, smoothed estimates are likely to underestimate variability especially in the shorter 

term. Kriged models (including non-linear kriging) also enable quantification of mineralisation 

uncertainty.   

An alternative approach to estimating spatial models of mineralisation characteristics is to use 

geostatistical simulation, which generates unsmoothed spatial models. There are several 

algorithms that can be used to generate geostatistical simulations of spatial mineralisation 

characteristics, including sequential Gaussian simulation ((Deutsch, 1992), the turning bands 

method (Journel, 1994) and pluri-gaussian methods (Dowd et al, 2003). Within a given domain 

and at a specified scale, geostatistical simulation reproduces the spatial variability (via the 

variogram) of the data and the distribution (histogram) of the data. Conditional geostatistical 

simulation also honours actual data values at sampled locations. It is possible to generate 

multiple realisations of the mineralisation, each with the variability that will be encountered 

when mining. A sufficiently large set of realisations constitutes a model of spatial 

mineralisation uncertainty, both globally and locally. It is also possible to simulate the geometry 

of the envelopes into which the mineralisation and other pertinent properties are simulated. 

Primary rock properties (such as porosity and density) are generally additive and, consequently, 

can be easily estimated and spatially simulated.  This is not true for metallurgical response 

properties (such as permeability, crushed rock density distribution), which are often inherently 

non-linear and non-additive.  Coward et al (2009) give a framework for classification of 

geometallurgical parameters. Geometallurgical modelling should proceed by building spatial 

models of primary rock properties which „drive‟ key processing responses, and thus allow 

correct handling of non-linearity and non-additivity.  Spatially informed prediction of 

processing responses necessitates modelling the linkage of primary properties of the in situ 

mineralisation (e.g., mineralogy and grades) with metallurgical performance measures at 

various scales (e.g., recovery and throughput). The concept of scale in this context must 

encapsulate the physical scale of primary sample extracted (the sample support), the scale of the 

selective mining unit (SMU) used in geostatistical simulations (the SMU support) and the scale 

of the metallurgical tests from which the responses are inferred (what metallurgists call „scale‟).  

Figure 2 shows a plan view of a mineralised body with thickness plotted. The left image shows 
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a geometry that is far more continuous and less variable that the realisation on the right.  

Models of Mining and Processing 

Development of an ultimate pit shell, the mining sequence and the mining schedule require the 

consideration of spatial mineralisation properties, process configuration and economic 

parameters. The „optimal‟ mine plan yields the highest net present value (or the maximum of 

some other financial indicator). This requires the aggregation of the mined material into larger 

parcels to make the optimisation process tractable. Thus a smoothing set is required (if the 

inputs are kriged blocks this is an additional smoothing; Vann et al, 2011). Conventional 

mining optimisation assumes that the input parameters are all deterministic, i.e., exactly known.  

Furthermore, the solution of the long-term mine plan usually defines of a number of ore parcels 

(commonly shapes representing the geometry of annual excavations termed annual „push backs‟ 

or „shells‟) that are to be mined in a sequence over an extended period. Once the mine is 

operational this long-term optimal mine plan usually forms the basis for shorter term mine 

planning within each sub-parcel to achieve a tonnes and grade profile in a shorter time horizon 

(e.g., months). This short-term mine plan is necessary for operational planning and control.  

Scenario-based project evaluation (SBPE) requires the ability to translate a mine plan at any 

resolution, usually annual or at most quarterly, into shorter time frames and to sequence blocks 

in a logical manner. Although there are approaches to optimisation of the mine plan under 

conditions of uncertainty (Dimitrakopoulos et al., 2002, Dowd and Dare-Bryan, 2004), 

currently sub-scale optimisation is not practically applicable for real time optimisation of the 

sequence of processing of block models.  This due to the fact that there can be in excess of 

several million blocks (in large deposits hundreds of millions) each containing multiple (50-

300) realisations for several grade and physical attributes.  

In SBPE once the optimal long-term mine plan has been derived, producing monthly, quarterly 

or annual parcels of blocks to be mined, these are sequenced using geometric constraints. In 

some cases it is possible to apply a selection algorithm to find the „best‟ blocks in a way that 

approximates an optimal blend or sequences. An example of this is the grade stress algorithm 

developed by Everett (Everett, 2010) for iron ore mines.  

Stockpiles not only provide buffers to manage feed rate variability to processes, but, if 

combined with correct operational strategy, can also provide an opportunity either to blend or 

  

Figure 2: Images showing the outcomes of spatial simulation of mineralisation thickness, 

thicker areas shown in lighter colours  and thinner areas in darker colours  
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segregate materials. Using conditional simulation as inputs provides high-resolution models 

that reflect realistic variability at the SMU scale. It is thus possible to model realistically the 

impact of stocks and stockpiling strategies on the properties of material moving between 

processes. These impacts are often understated, and can lead to biased results, especially when 

applying transfer functions to the averages of large parcels of ore. This effect is demonstrated in 

Figure 3, where product grade targets are based on processing mined grade through a regression 

function. The dark solid line shows the target derived by processing the annual average feed 

grade through a regression function; the dark dashed line shows the targets calculated using the 

regression model on monthly-mined grade. Not only is there a difference between the two 

methods but the direction of the bias changes depending on the input grades.  

 

Figure 3: A chart showing the difference in target derived from processing annual averaged 

mined grades through a regression function (Black Line) and deriving the annual targets based 

on a regression of monthly-mined grades. 

Process simulation of an operating plant requires the use of calibrated unit process models. A 

popular approach includes the use of population balance models where the mass of material in 

the circuit is maintained.(King, 2001, Napier-Munn, 1999) The model iterates until the 

differences in mass flows entering and leaving units in the flowsheet converge to a specified 

minimum. This process is computationally intensive and it is currently unrealistic to run these 

models to convergence for every block when block models contain in the order of, say, 250 000 

blocks. The approach suggested here is to evaluate the process response to a number different 

combinations of rock property inputs (e.g., rock strength parameters, different feed blends) until 

sufficient data are acquired to model the relationship between input primary variables and the 

process responses of interest (Coward et al., 2009). Pragmatically, these can often be reasonably 

modelled by linear (      ) or second-order quadratic functions. Fitting these parameters 

is more generically known as parameterisation of inverse problems. (Tarantola, 2005). 

The left hand image in Figure 4 shows results of simulating the diamond recovery process 

response using a process flow-sheet simulator. The least squares regression line for the data is 

also shown. The SBPE process model assumes a process transfer function of the form   
    , where   is the output value of interest,   is a slope parameter and   is a constant used 

in the model. For each of the input parameters used it is possible to estimate the standard error. 

The standard error is a function of sample size and the variability observed in the data or 
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simulations. The standard error can be used to provide information on how the re-estimated 

parameter may change with a new sample from the same underlying distribution. In summary, 

the data from the plant were used to derive a number of points to generate a relationship 

between % kimberlite and % recovery. By removing one point and re-estimating   and   
(„bootstrapping‟) it was possible to derive a set of   and   parameters. Using these multiple 

values of   and   it was then possible to calculate a standard error of the mean value for m and 

for c by dividing the standard deviation of the values thus obtained by the sample size used in 

the bootstrapping procedure. Using this standard error, it was possible to draw, at random, 

values for   from a normal distribution with a mean equal to the   estimated with all the data 

and a standard deviation equal to the standard error. A similar procedure was followed for the   
value. Although we simulated the   and   parameters independently there is a need in future 

work to account for any correlations that might exist between these parameters. 

The resulting relationships that can be used when running the value chain model are depicted in 

the right hand chart in Figure 4. 

  

Figure 4: Plot of derived relationship between proportion kimberlite and fractional diamond 

recovery (LHS) and simulated recovery curves (RHS) 

In this way, it is possible to generate many such curves for each of the required processes that 

can be sampled randomly for each iteration of the model. In this way, operational uncertainty is 

introduced into the recovery model, in a way that is related to the variability and number of 

observations that have been obtained. Using these models, it is possible to simulate the process 

operation and recovery efficiency on a block-by-block basis. Figure 5 depicts the daily 

production statistics, including the tonnes mined, carats recovered, end of day stockpile level, 

the blocks mined and the diamond recovery factor. 

Models of Future Context 

There is a rich literature and tradition of industrial practice in which problems involving high 

degrees of uncertainty have been dealt with from a scenario viewpoint. This approach, variously 

called „scenario planning‟, „scenario analysis‟ and „scenario thinking‟ endeavours to preserve 

and explore the consequences of uncertainty rather than ignore it (Ilbury and Sunter, 2001, van 

der Heijden, 2005, Ramirez et al., 2010). 

Mining companies have varying degrees of choice and control over configuration of the mining, 

blending, and mineral processing infrastructure and associated policies (Vann et al., 2012). 
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However, firms generally have no control over externalities, which are very significant drivers 

of economic success and sustainability performance. For many of these externalities (exchange 

rates, interest rates, market prices) stochastic models, based as they are on distributions and 

covariances that are necessarily obtained from past behaviours, (Biger and Hull, 1983) may be 

at least incomplete and at worst misleading and biased. The SBPE approach has thus leaned 

towards use of established scenario planning approaches (see van der Heijden, 2005) to model 

plausible possible configurations of such external factors. In conventional usage of Scenario 

Planning, a „scenario‟ (van der Heijden, 2005) is designed to capture aspects over which the 

firm has limited or no control, such as future commodity prices, costs, tax environment and 

exchange rates („externalities‟). Relevant externalities may also include evolution of social, 

political and other factors that cannot easily be quantified. Of course, such scenarios must be 

regarded as plausible futures, not deterministic predictions. The importance of the scenarios lies 

in their use to test the robustness of strategy, not in their prediction accuracy. An example set of 

mining scenarios developed by the World Economic forum and can be accessed at 

http://www.weforum.org/videos/mining-metals-scenarios-2030. 

 

Figure 5: Key plant outputs from the integrated process simulation 

Many quantitative models have been developed for interest rate and foreign exchange rates, 

ranging from simple extensions of Black and Scholes (1973) through Vasicek (1997) and the 

latest models with stochastic volatility e.g., Garman and Kohlhagen (1983). Hughston (1996) 

provides a good overview of the subject.   

Conceptually it is possible to constrain the values for parameterising these models given the 

requirement for internal consistency in each of the scenarios developed.  For instance in a 

scenario with high uncertainty of the oil price, the volatility in the forward models used to 

simulate oil price could be increased, and in a scenario where oil supply had been perceived to 

be stable the volatility parameters could be reduced. These time series realisations of input 

costs, prices for commodities and exchange rates can be selected at each time period when 

running the value chain simulation and be incorporated into the modelling. In this way the 

uncertainty for the external context in each of the selected scenarios can be incorporated into 

the financial evaluation of the project.  
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Simulation of the Integrated Value Chain 

To derive any value from the integrated, holistic model of the value chain requires a simulation 

of its operation. Early work (Dowd, 1976, Dumay, 1981, Chica-Olmo, 1983, Fouquet De, 1985) 

focused on understanding the influence of technical aspects related to complex mining 

constraints and on quality control during production. As computer power increased, more 

simulations were run and different types of simulation methods were developed. 

Simulating the integrated model is computationally intensive requiring a linking at SMU scale 

of the multiple geostatistical realisations with the processes carried out in mining and treatment. 

Increasingly faster computer hardware, combined with efficient programming (especially 

parallel processing) and more efficient algorithms, (e.g., direct block simulation – see 

Emery,(2009)), have however made generation and processing of large multi-variable 

Conditionally Simulated (CS) models viable. There is ongoing work that proposes (Armstrong 

et al., 2010)) reduction of the input set of realisations in order to decrease the computational 

overheads of post-processing CS models, but where possible we argue that such reduction  

should be avoided until the end of the value chain, or at least as far down the value chain where 

the solution remains tractable. This will preserve the full uncertainty model for critical steps 

early in the value chain (e.g. mining depletions and stockpiling) 

RESULTS AND DISCUSSION 

The SBPE approach suggested here has been applied over several years to a number of 

operations producing a number of different products, including diamonds, gold, base metals, 

uranium and iron ore. Two distinct approaches have emerged: 

 Operations that require the maximum recovery of the material of interest e.g. gold, 

diamonds. In these type of problems block selection for processing is driven by a value 

maximising functions; and 

 Operations that require a product that is constrained by a quality target e.g., iron ore and 

uranium. The target is often multivariate and the selection of blocks thus requires a 

multivariate weighted measure of the „distance‟ of contained grades to the target grade.   

The generation of alternatives to be considered is, much like the derivation of scenarios, a 

process of determining the drivers that the project team would most like to explore. This is not 

necessarily an NN matrix where all levels of all settings are compared against one another, but 

requires rather a distinctly orthogonal set of configurations that is set up to explore the outcome 

space. In most cases to date, the outcomes of one or two alternatives from an initial input set of 

20-50 are clearly more desirable and these are then evaluated further by generating alternatives 

that have similar properties (i.e. map out the adjacent „alternative space‟).  

A diamond example 

As an example, in a diamond project it was an option to select one of three distinct drilling 

densities to acquire geological (geometry) and grade data and it was possible to evaluate the 

differences in the valuation of the project that would arise using this methodology.  The primary 

impact of the variable mineralisation geometry, given the tonnage constraints imposed by the 

operation infrastructure, reduced the throughput and recovery efficiency in the early life of the 

operation. By using the SBPE approach described above, the value derived from modelling the 

value chain based on different levels of information could be calculated. Figure 6 shows the 

average valuation arising from the value chain based on the three different simulated 

geometries. 
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Figure 6: Plot showing average project valuation for three different simulated geometries 

Value chain modelling of mineral projects using the SBPE approach requires inputs that 

incorporate uncertainty and variability (geostatistical simulations), and specification of systems 

constraints and interactions in the mining and processing steps. Once configured, the model can 

be run to produce outputs that correctly reflect the cumulative effect of interaction, between the 

variable and uncertain resources and multiple potentially biasing constraints in the system.  

Computational aspects 

The value chain models for mining projects are required to process a large number of blocks – 

in a recent case over seven million blocks containing estimates for 26 variables was provided as 

the input, thus computing considerations are not trivial. The value chain modelling system 

described has been developed in a visual basic and .net environment using MVC (Model View 

Controller) architecture. Data is stored and processed in SQL server running on an industrial 

size server. The user interface is web based that allows for multiple user configurations and the 

ability to generate multiple outputs. Once configured the system allows for the selection and 

setting of several transfer functions, capacity constraints and objective functions. Typically, 

these models take in the region of 8 to 12 hours to run through a single alternative 

configuration, allowing most of the processing to be carried out overnight. 

 Multiple outputs can be somewhat overwhelming to analyse and thus require the user to 

contemplate outputs as probabilistic. As an example, Figure 7 depicts the grade range for the 

output of processing 100 realisations through a value chain to produce a number of product 

stockpiles. The dark parallel lines show the stockpile target grade range, and the grey overlay 

shows the range of grades that can be expected for each stockpile‟s grade. The light grey 

represents the maximum to minimum grade, the overlayed darker grey shows the P90 to P10 

distribution, and the white line shows the P50 for the output stockpile grade.  

As computing power increases, it is expected that the technical limit of the approach will 

expand. In the interim, a trade-off has to be struck between the resolution of output and the 

model run time. Thus, work on scenario reduction will add further to the value to this approach. 

In some of the cases considered, algorithms that model the shorter time-scale optimisation, 

which typically occurs in operations as new information becomes available, are required. 
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Implementation of these has not met with required performance in real-time. Further research is 

required to test ways of incorporating such algorithms. 

 

Figure 7: Summary plot of the outcome of running 100 realisations of the mineralisation 

through a value chain model to produce product stockpiles. 

CONCLUSIONS 

The mining business can be modelled as a value chain facilitating an analysis of the interaction 

of variability and uncertainty with system constraints. These interactions may give rise to non-

linear responses that will not be correctly reflected by using traditional approaches to project 

evaluation. Mineral resource uncertainty can be adequately captured using a suite of 

geostatistical conditional simulations, with each realisation in the set reflecting the expected 

resource variability. 

Some of the models used in the design and simulation of mining and mineral processing can be 

used to develop reified transfer functions. The calibrated parameterised transfer functions not 

only facilitate rapid simulation of complex interconnected processes but in some cases the 

uncertainty in the parameters of the transfer functions can be derived either from sample data, 

or from population balance models based on the data, and facilitate the incorporation of process 

efficiency uncertainty into the value chain model. 

The futures in which long life mines will operate cannot be easily forecast. The paradigm of 

testing alternative project configurations in a few carefully crafted, internally consistent 

scenarios provide an alternative pathway to develop projects with a more resilient design. This 

is achieved by iteratively adapting design configurations that have been optimised for the 

singular „corporate future‟ until they have an acceptable probability of success in all of the 

contemplated future contexts.  

Scenario-based project evaluation is a value chain approach to mine design, operation and 

evaluation, which presents mining companies with an additional insights into their projects. In 

some instances significant shift in expected project value can result.  However, SBPE will allow 

for the valuation of reduction in uncertainty even in cases where the expected value of the 

„base‟ or „reference‟ case does not shift as a result of a risk mitigation or opportunity exploiting 

action. This suggests that projects evaluated using the SBPE approach should produce 

outcomes that are more robust than those using a traditional expected outcome approach. 
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